Skip to contents
library(ThinkingGrid)
library(lme4)
#> Loading required package: Matrix
library(sjPlot)
library(png)
library(grid)

data_file <- system.file("extdata", "sample_data.csv", package = "ThinkingGrid")
tg_data <- read.csv(data_file)

knitr::kable(head(tg_data))
id condition probe dc ac valence
0 Negative 1 6 1 -1
0 Negative 2 4 3 -1
0 Negative 3 3 3 0
0 Negative 4 4 5 0
1 Negative 1 5 1 -2
1 Negative 2 5 1 -2

In case data is already collected, users can automatically add the quadrant depths using the add_depths function. The deliberate and automatic constraints column names must be passed to the function and must range from one to six for it to work correctly.

tg_data <- add_depths(
  tg_data,
  dc = "dc",
  ac = "ac"
)

knitr::kable(head(tg_data))
id condition probe dc ac valence total_depth quadrant sticky hybrid free directed
0 Negative 1 6 1 -1 5 3 0 0 0 5
0 Negative 2 4 3 -1 1 3 0 0 0 1
0 Negative 3 3 3 0 1 1 0 0 1 0
0 Negative 4 4 5 0 2 4 0 2 0 0
1 Negative 1 5 1 -2 4 3 0 0 0 4
1 Negative 2 5 1 -2 4 3 0 0 0 4

The depths can be used as dependent variables in statistical analyses. The thinkgrid_quadrant_plot function provides a convenient way to visualize each of these analyses within their individual quadrants. Build the models and their respective ggplot2 objects similar to the example shown below.

free_model <- lmer(free ~ valence + (1|id), data = tg_data)
sticky_model <- lmer(sticky ~ valence + (1|id), data = tg_data)
directed_model <- lmer(directed ~ valence + (1|id), data = tg_data)
salience_model <- lmer(hybrid ~ valence + (1|id), data = tg_data)

free_plot <- plot_model(free_model, type = "pred")
sticky_plot <- plot_model(sticky_model, type = "pred")
directed_plot <- plot_model(directed_model, type = "pred")
salience_plot <- plot_model(salience_model, type = "pred")

Once the plots are made, simply pass them to the thinkgrid_quadrant_plot function.

combined_plot1 <- thinkgrid_quadrant_plot(
  p_sticky = sticky_plot,
  p_salience = salience_plot,
  p_free = free_plot,
  p_directed = directed_plot
)

combined_plot1

This function also accepts images as arguments, as long as they are transparent (e.g., png). Instead of passing the ggplot2 objects, the png object can be passed instead.

image_file <- system.file("extdata", "rabbiduck.png", package = "ThinkingGrid")
image <- readPNG(image_file)
image <- rasterGrob(image)

combined_plot2 <- thinkgrid_quadrant_plot(
  p_sticky = image,
  p_salience = salience_plot,
  p_free = image,
  p_directed = directed_plot
)

combined_plot2


Plotting Quirks

You will notice that the theme of the argument plots is different than the theme of the subplots. This is because, by default, the inner theme (i.e., subplot theme) is generated by

default_inner_theme
#> function (inner_margin = 20) 
#> {
#>     im <- inner_margin
#>     ggplot2::theme_minimal() + ggplot2::theme(plot.background = ggplot2::element_blank(), 
#>         panel.background = ggplot2::element_blank(), plot.margin = ggplot2::margin(im, 
#>             im, im, im), legend.position = "none", aspect.ratio = 1, 
#>         axis.title = ggplot2::element_text(size = 14), axis.text = ggplot2::element_text(size = 12), 
#>         axis.title.y = ggplot2::element_text(margin = ggplot2::margin(r = 10)), 
#>         panel.grid.major = ggplot2::element_line(color = "gray90", 
#>             linewidth = 0.2), panel.grid.minor = ggplot2::element_blank(), 
#>         axis.line = ggplot2::element_line(color = "black", linewidth = 0.5)) + 
#>         ggplot2::labs(title = ggplot2::element_blank())
#> }
#> <bytecode: 0x55b3cbe3c028>
#> <environment: namespace:ThinkingGrid>

You can manually set the inner theme using the inner_theme optional argument. This will not affect png images, only the plots.

library(ggplot2)
#> 
#> Attaching package: 'ggplot2'
#> The following object is masked from 'package:sjPlot':
#> 
#>     set_theme

thinkgrid_quadrant_plot(
  p_sticky = image,
  p_salience = salience_plot,
  p_free = image,
  p_directed = directed_plot,
  inner_theme = ggplot2::theme_dark()
)

Rendering

If you are using RStudio, plots generated by thinkgrid_quadrant_plot have a tendency to not render especially nicely (funny aspect ratios, text crowding issues, etc). To solve such rendering issues, we recommend saving the plot to a file.

ggplot2::ggsave("properly_rendered.jpg", combined_plot2, width = 10, height = 10, dpi = 300)